Structural basis for pterin antagonism in nitric-oxide synthase. Development of novel 4-oxo-pteridine antagonists of (6R)-5,6,7,8-tetrahydrobiopterin.

نویسندگان

  • P Kotsonis
  • L G Fröhlich
  • C S Raman
  • H Li
  • M Berg
  • R Gerwig
  • V Groehn
  • Y Kang
  • N Al-Masoudi
  • S Taghavi-Moghadam
  • D Mohr
  • U Münch
  • J Schnabel
  • P Martásek
  • B S Masters
  • H Strobel
  • T Poulos
  • H Matter
  • W Pfleiderer
  • H H Schmidt
چکیده

Pathological nitric oxide (NO) generation in sepsis, inflammation, and stroke may be therapeutically controlled by inhibiting NO synthases (NOS). Here we targeted the (6R)-5,6,7,8-tetrahydro-l-biopterin (H(4)Bip)-binding site of NOS, which, upon cofactor binding, maximally increases enzyme activity and NO production from substrate l-arginine. The first generation of H(4)Bip-based NOS inhibitors employed a 4-amino pharmacophore of H(4)Bip analogous to antifolates such as methotrexate. We developed a novel series of 4-oxo-pteridine derivatives that were screened for inhibition against neuronal NOS (NOS-I) and a structure-activity relationship was determined. To understand the structural basis for pterin antagonism, selected derivatives were docked into the NOS pterin binding cavity. Using a reduced 4-oxo-pteridine scaffold, derivatives with certain modifications such as electron-rich aromatic phenyl or benzoyl groups at the 5- and 6-positions, were discovered to markedly inhibit NOS-I, possibly due to hydrophobic and electrostatic interactions with Phe(462) and Ser(104), respectively, within the pterin binding pocket. One of the most effective 4-oxo compounds and, for comparisons an active 4-amino derivative, were then co-crystallized with the endothelial NOS (NOS-III) oxygenase domain and this structure solved to confirm the hypothetical binding modes. Collectively, these findings suggest (i) that, unlike the antifolate principle, the 4-amino substituent is not essential for developing pterin-based NOS inhibitors and (ii), provide a steric and electrostatic basis for their rational design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrahydrobiopterin inhibits monomerization and is consumed during catalysis in neuronal NO synthase.

The biosynthesis of nitric oxide (NO) is catalyzed by homodimeric NO synthases (NOS). For unknown reasons, all NOS co-purify with substoichiometric amounts of (6R)-5,6,7,8-tetrahydrobiopterin (H(4)Bip) and require additional H(4)Bip for maximal activity. We examined the effects of H(4)Bip and pterin-derived inhibitors (anti-pterins) on purified neuronal NOS-I quaternary structure and H(4)Bip co...

متن کامل

Identification of the 4-amino analogue of tetrahydrobiopterin as a dihydropteridine reductase inhibitor and a potent pteridine antagonist of rat neuronal nitric oxide synthase.

The binding of tetrahydropteridines with 6-di- and trihydroxypropyl side chains to recombinant rat neuronal nitric oxide (NO) synthase (EC 1.14.13.39) was determined by competition with 6R-[3'-3H]-5,6,7,8-tetrahydro-L-erythro-biopterin (6R-[3'-3H]H4biopterin). Although all but one of the derivatives exhibited only poor affinities (Ki 50 microM), the 4-amino analogue of 6R-H4 biopterin was a pot...

متن کامل

(6R)-5,6,7,8-tetrahydro-L-biopterin and its stereoisomer prevent ischemia reperfusion injury in human forearm.

OBJECTIVE 6R-5,6,7,8-tetrahydro-L-biopterin (6R-BH4) is a cofactor for endothelial nitric oxide synthase but also has antioxidant properties. Its stereo-isomer 6S-5,6,7,8-tetrahydro-L-biopterin (6S-BH4) and structurally similar pterin 6R,S-5,6,7,8-tetrahydro-D-neopterin (NH4) are also antioxidants but have no cofactor function. When endothelial nitric oxide synthase is 6R-BH4-deplete, it synthe...

متن کامل

Tetrahydrobiopterin radical enzymology.

(6R)-5,6,7,8-Tetrahydrobiopterin (H4B) and related tetrahydropterins are cofactors for several enzymes and can be generators or scavengers of reactive oxygen species in cells. Our review will focus on pterin radical formation in enzymes, particularly in the nitric oxide synthases (NOSs, EC 1.14.13.39) where pterin radical formation is best documented. We also summarize properties of pterin and ...

متن کامل

Structural analysis of isoform-specific inhibitors targeting the tetrahydrobiopterin binding site of human nitric oxide synthases.

Nitric oxide synthesized from l-arginine by nitric oxide synthase isoforms (NOS-I-III) is physiologically important but also can be deleterious when overproduced. Selective NOS inhibitors are of clinical interest, given their differing pathophysiological roles. Here we describe our approach to target the unique NOS (6R,1'R,2'S)-5,6,7,8-tetrahydrobiopterin (H(4)Bip) binding site. By a combinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 52  شماره 

صفحات  -

تاریخ انتشار 2001